lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate
نویسندگان
چکیده
Objective: To examine the therapeutic activity of hydrophilic glucocorticoid encapsulated in PLGA nanoparticles, which have shown slow release and are targeted to inflamed joints after intravenous administration, in experimental arthritis models. Methods: Betamethasone sodium phosphate (BSP) encapsulated in PLGA nanoparticles with a size of 100–200 nm (PLGA-nanosteroid) was prepared using a modified oil in water emulsion solvent diffusion method with Zn ions and coated with lecithin. Rats with adjuvant arthritis (AA rats) and mice with anti-type II collagen antibody induced arthritis (AbIA mice) were treated intravenously with PLGA-nanosteroid after the initial sign of arthritis. Results: In AA rats, a 30% decrease in paw inflammation was obtained in 1 day and maintained for 1 week with a single injection of 100 mg of PLGA-nanosteroid. Soft x ray examination 7 days after this treatment showed decreased soft tissue swelling. Moreover, the PLGA-nanosteroid was also highly effective in AbIA mice. A single injection of 30 mg of the PLGA-nanosteroid resulted in almost complete remission of the inflammatory response after 1 week. In contrast, the same dose of free BSP after three administrations only moderately reduced the severity of inflammation. In addition, a histological examination 7 days after the treatment showed a significant decrease of the inflammatory cells in the joints. Conclusion: The observed strong therapeutic benefit obtained with PLGA-nanosteroid may be due to the targeting of the inflamed joint and its prolonged release in situ. Targeted drug delivery using a sustained release PLGA-nanosteroid is a successful intervention in experimental arthritis.
منابع مشابه
Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate.
We examined the therapeutic activity of betamethasone disodium 21-phosphate (BP) encapsulated in biocompatible and biodegradable blended nanoparticles of poly (D,L-lactic/glycolic acid) (PLGA)/poly(D,L-lactic acid) (PLA) homopolymers and polyethylene glycol (PEG)-block-PLGA/PLA copolymers (stealth nanosteroid) in experimental arthritis models. Various stealth nanosteroids with a size of 45 to 1...
متن کاملTreatment of experimental arthritis with poly(D, L-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate.
OBJECTIVE To examine the therapeutic activity of hydrophilic glucocorticoid encapsulated in PLGA nanoparticles, which have shown slow release and are targeted to inflamed joints after intravenous administration, in experimental arthritis models. METHODS Betamethasone sodium phosphate (BSP) encapsulated in PLGA nanoparticles with a size of 100-200 nm (PLGA-nanosteroid) was prepared using a mod...
متن کاملRemoval of betamethasone sodium phosphate from wastewater using zinc oxide nanoparticles
The photocatalytic degradation of betamethasone sodium phosphate was investigated in aqueoussuspensions of zinc oxide nanoparticular with diameter size 20 nm under a variety of conditions.Different parameters such as irradiation time, the amount catalyst (0.12-0.8 g LH), initialconcentration of drug (10-50 mgLjand initial pH values (ranging from 3 to II) were investigatedin the presence of vari...
متن کاملEffects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules
Background: Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency.Objective: Here, we studies the effects of ultrasound irradiation on the release profile of 5-flu...
متن کاملTherapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis.
PURPOSE The therapeutic effects of betamethasone phosphate (BP) encapsulated in biocompatible and biodegradable blended nanoparticles of poly(lactic acid) (PLA) homopolymers and PEG-block-PLA copolymers (stealth nanosteroids) were examined in an experimental autoimmune uveoretinitis (EAU) model in Lewis rats. METHODS EAU was induced by S-antigen peptide in Lewis rats. Accumulation of systemic...
متن کامل